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Nicotine and the adolescent brain
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Abstract Adolescence encompasses a sensitive developmental period of enhanced clinical
vulnerability to nicotine, tobacco, and e-cigarettes. While there are sociocultural influences,
data at preclinical and clinical levels indicate that this adolescent sensitivity has strong neuro-
biological underpinnings. Although definitions of adolescence vary, the hallmark of this period is
a profound reorganization of brain regions necessary for mature cognitive and executive function,
working memory, reward processing, emotional regulation, and motivated behavior. Regulating
critical facets of brain maturation are nicotinic acetylcholine receptors (nAChRs). However,
perturbations of cholinergic systems during this time with nicotine, via tobacco or e-cigarettes,
have unique consequences on adolescent development. In this review, we highlight recent clinical
and preclinical data examining the adolescent brain’s distinct neurobiology and unique sensitivity
to nicotine. First, we discuss what defines adolescence before reviewing normative structural and
neurochemical alterations that persist until early adulthood, with an emphasis on dopaminergic
systems. We review how acute exposure to nicotine impacts brain development and how drug
responses differ from those seen in adults. Finally, we discuss the persistent alterations in neuronal
signaling and cognitive function that result from chronic nicotine exposure, while highlighting
a low dose, semi-chronic exposure paradigm that may better model adolescent tobacco use. We
argue that nicotine exposure, increasingly occurring as a result of e-cigarette use, may induce
epigenetic changes that sensitize the brain to other drugs and prime it for future substance abuse.
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Introduction

Adolescence is a period of transition from childhood to
adulthood marked by characteristic behavioral changes,
including increased risk-taking, novelty-seeking and
peer associations that are thought to ease successful
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transition to independence and autonomy in adulthood
(Spear, 2000; 2013). During this developmental window,
the brain is sensitive to novel experiences with major
experience-dependent plasticity occurring in executive
control and decision-making regions, particularly in the
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prefrontal cortex (Bernheim et al. 2013). It is also, however,
a time of increased vulnerability to drug abuse (Chambers
et al. 2003; Crews et al. 2007). Initiation of substance abuse
typically occurs during this period, with progression
from use of alcohol and tobacco in early teens to illegal
substances at later ages (Lai et al. 2000; Hanna et al. 2001;
Biederman et al. 2006). Almost 90% of adult smokers
started before the age of 18 (Substance Abuse and Mental
Health Services Administration, 2011). Whereas tobacco
use in teens is now declining as a result of government
regulation (Farrelly et al. 2013; U.S. Department of
Health and Human Services, 2014), the use of electronic
nicotine delivery systems, or e-cigarettes, is escalating
rapidly (Centers for Disease Control and Prevention,
2013; Camenga et al. 2014). Although marketed as a
smoking cessation aid, and a safer alternative to smoking,
e-cigarettes are not subject to FDA regulation and can be
purchased by minors in many states (Paradise, 2014).

There is a substantial literature that shows nicotine to
be a neuroteratogen that exerts long-term, maturational
effects at critical stages of brain development (Slotkin,
2004; Ginzel et al. 2007; Dwyer et al. 2008, 2009). As
discussed in the present review, adolescence is a sensitive
period for maturation of brain circuits that regulate
cognition and emotion, with resulting vulnerability to
the effects of nicotine and tobacco. Although relevant
clinical work is discussed, this review focuses primarily
on adolescent rodents, which exhibit many of the
same physiological and behavioral changes as human
adolescents (Spear, 2000) and are more appropriate
experimental models for drug studies. We argue that the
rapidly changing, immature adolescent brain has differing
sensitivity to drugs such as nicotine and tobacco, and drug
exposure during this time can lead to long-term changes
in neural circuitry and behavior.

What is adolescence?

Adolescence is a transitional period from childhood to
adulthood that is conservatively estimated to last from 12
to 18 years of age in humans and from postnatal (P) days
28 to 42 in rats (Spear, 2000; Fig. 1). It is conserved across
mammalian species, with humans and rodents exhibiting
similar physiological and behavioral changes (Spear, 2007;
2013). However, defining the boundaries of this period
and what it encompasses is contentious. Some report that
changes signaling its onset emerge as early as age 10 in
humans or P21 in rats (Sturman & Moghaddam, 2011;
Hollenstein & Lougheed, 2013; Burke & Miczek, 2014).
Similarly, maturation may not be complete until the mid
20s in humans or around P55 in rodents (Laviola et al.
2003; Burke & Miczek, 2014). Since adolescence as a whole
has no obvious events to signal its beginning or end and
individual as well as sociocultural differences influence the

timing and duration of this period, its boundaries remain
a grey area (Fig. 1).

Many definitions equate adolescence with sexual
maturation, or puberty (Fig. 1). Although timing of
hypothalamic–pituitary–gonadal axis reawakening and
resulting maturation of reproductive function overlaps
in humans and rodents (Spear, 2000; Varlinskaya et al.
2013), puberty is temporally restrictive, lasting about
5 years in humans (Sun et al. 2002) and 10–20 days
in rodents (Sisk & Zehr, 2005; Schneider, 2013). In
humans, the onset of puberty is thought to signal
adolescence, but onset can vary widely depending on
sex (gender), socioeconomic status, and nutritional state
(Spear, 2000). Furthermore, there is growing evidence
that sexual maturation is occurring progressively earlier
in the US and some European countries (Euling et al.
2008; Aksglaede et al. 2009; Biro et al. 2013; Cabrera et al.
2014). The underlying causes remain unclear although
some suggest higher rates of obesity (Biro et al. 2013) while
others suggest epigenetic and environmental influences
(Aksglaede et al. 2009; Meeker, 2012; Hagen et al.
2014) as the main contributing factors. These variations
in pubertal timing further complicate the validity of
equating adolescence to puberty. Sex-related variation
in pubertal timing is also seen in rats (Vetter-O’Hagen
& Spear, 2012; Schneider, 2013; Varlinskaya et al.
2013), and the adolescent peak in novelty-seeking
seems to be independent of gonadal hormone changes
(Vetter-O’Hagen & Spear, 2012). Moreover, the relatively
rapid changes in neural systems involved in emotional
and reproductive function that occur during puberty do
not match the maturation of other cognitive systems
that extend further into the adolescent period (Dahl,
2008). Pre-pubertal increases in neuroactive adrenal
steroids, such as the androgens dehydroepiandrosterone
(DHEA) and dehydroepiandrosterone sulfate (DHEAS),
have also been associated with neurobehavioral changes
of adolescence in humans and non-human primates, but
corresponding effects are not seen in rodents (Spear,
2000; Forbes & Dahl, 2010). Other definitions emphasize
the adolescent growth spurt although changes in body
weight are not correlated with adolescent neurobehavioral
changes (Spear, 2000). Whereas physical changes are
important components of adolescence and help set its
boundaries, the hallmark of this period is a major
reorganization of forebrain circuitry (Fig. 1).

Normative structural and neurochemical maturation
of the adolescent brain

Structural changes. Adolescent behavioral alterations,
including both deficits and improvements, are paralleled
by a dynamic structural and functional reorganization
of the brain. The adolescent brain does not mature
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by becoming larger but rather through prolonged
reorganization of grey matter, white matter, and associated
neurochemical systems. The increasing cognitive capacity
of the adolescent coincides with a decrease in cortical grey
matter thickness, resulting from experience-dependent
loss of synapses and a concomitant strengthening of
the remaining connections (Ostby et al. 2009; Gogtay
& Thompson, 2010; Paus, 2010). Grey matter volume
and density decreases during adolescence in the pre-
frontal cortex, parietal cortex and basal ganglia, which
are critical for executive function, sensory processing,
and motivated behaviors (Giedd et al. 1999; Sowell et al.
1999; 2001). There are corresponding increases in white
matter, which is thought to reflect increased myelination
and axonal diameter, resulting in increased efficiency of
impulse transduction (Paus, 2010). The changes in grey
and white matter that occur during adolescence are not
homogeneous throughout the brain, but differ regionally,
with phylogenetically older brain regions maturing earlier
than the newer ones (Gogtay et al. 2004). The imbalanced
maturation of subcortical emotional and reward-focused
systems as well as cortical executive and impulse control
systems is thought to underlie adolescent increases in
risk-taking behavior, particularly in social settings (Casey
et al. 2011; Smith, 2013).

Functional magnetic imaging techniques, coupled
with graph theory, have recently allowed assessment
of functional connectivity between brain regions that
show similar activation patterns (Rubinov & Sporns,
2010). The pronounced structural and neurochemical
changes during adolescence are paralleled by increases
in functional connectivity, which play a significant role
in the development of cognitive control (Luna et al.

2010). Adolescence is a transition period in which the
organization of functional networks shifts from local
interactions in children to more distributed connectivity
in young adults (Fair et al. 2009; Hwang et al. 2010;
Satterthwaite et al. 2013). Maturation of inhibitory
control is associated with improved long-range functional
connectivity between frontal and subcortical regions
with simultaneous decreases in short-range, within-region
connectivity in the frontal and parietal cortices (Hwang
et al. 2010). Similarly, maturation of working memory
reflects greater activation of the executive network
containing the fronto–parietal–cerebellar network and
less activation of the default mode network (medial
orbital frontal cortex, middle and inferior temporal
cortex, precuneus, and angular gyrus) (Satterthwaite et al.
2013). These changes in functional connectivity during
adolescence contribute to the development of executive
function and cognitive control, which is attributed, at
least in part, to the maturation of the dopamine system
(Padmanabhan et al. 2011; Fig. 2).

Neurochemical changes. In addition to structural remo-
delling, the adolescent brain undergoes substantial neuro-
chemical maturation (Fig. 2). The dopaminergic system,
in particular, experiences a profound reorganization that is
likely critical for the development of motivated behaviors
and associative learning (O’Donnell, 2010; Wahlstrom
et al. 2010). In rodents, dopamine receptor binding site
expression exhibits a pattern of overproduction followed
by both region- and cell type-specific pruning that is more
robust in males (Teicher et al. 1995; Andersen et al. 1997;
2000; Brenhouse et al. 2008; Naneix et al. 2012). There is
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Sexual Maturation
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Every decade, shifts earlier by 6 monthsFigure 1. Adolescence is a developmental
transition period with no clear hallmarks
signaling its start or finish
Many define adolescence as equivalent to sexual
maturation or puberty. However, maturation of
neural systems extends beyond the period of
sexual maturation, an effect seen in both
humans (A) and rodents (B). Although puberty is
an important component of adolescence, this
transitional period is distinguished by the
dramatic maturation and remodeling of the
brain. Human age is defined by years, and
rodent age is defined by postnatal days.
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also late maturation of dopamine innervation, particularly
in the anterior prefrontal cortex (Cao et al. 2007; Naneix
et al. 2012; Fig. 2). Firing of limbic dopamine cells in the
ventral tegmental area is higher in adolescents than adults
(Placzek et al. 2009; McCutcheon et al. 2012), and neuro-
transmitter turnover in target regions is greater (Tarazi
et al. 1998; Moll et al. 2000; Naneix et al. 2012). Peak levels
of extracellular dopamine are seen during late adolescence
in the nucleus accumbens (Philpot et al. 2009), and there
is late maturation of psychostimulant-induced dopamine
release in ventrolateral and dorsal striatum (Cao et al.
2007; Matthews et al. 2013).

During adolescence, there are also major functional
changes in the dopamine system that parallel changes in
emotional regulation and cognitive function (Wahlstrom
et al. 2010; Naneix et al. 2012; Garske et al. 2013;
Spear, 2013). Dopamine D2 receptor stimulation of
fast-spiking interneurons in the prefrontal cortex does
not emerge until late adolescence with the recruitment
and maturation of local GABAergic activity (Tseng &
O’Donnell, 2007; O’Donnell, 2010; Fig. 3). Furthermore,
important D1–NMDA receptor interactions in cortical

Dopaminergic

Glutamatergic

GABAergic

Cholinergic

immature

mature

LDTg

VTA

BLA

NAc

PFC

Figure 2. The immature adolescent brain undergoes
substantial growth, reorganization, and pruning
At the start of adolescence, connectivity between the prefrontal
cortex (PFC) and limbic regions is immature, as indicated by dashed
lines. As adolescence proceeds, this connectivity markedly increases
and completes development last. Similarly, dopaminergic projections
from the ventral tegmental area (VTA) continue to develop into early
adulthood and are strongly influenced by cholinergic projections
from the laterodorsal tegmental nucleus (LDTg). The nucleus
accumbens (NAc), on the other hand, develops earlier than
associated prefrontal cortical regions, as indicated by solid lines,
which may consequently lead to the characteristic expression of
increased novelty-seeking and risk-taking behavior. Furthermore,
with the immature projections from the basolateral amygdala (BLA)
to the PFC, discrepant maturational timelines of cortical and
subcortical regions leads to diminished executive control of reward
and motivated behavior.

pyramidal neurons that are necessary for mature cognitive
and attentional processing are still developing during
this time (Tseng & O’Donnell, 2005; Fig. 3). Ventral
hippocampal input to the medial prefrontal cortex
is also strengthened during late adolescence by a D1

receptor-mediated emergence of an NMDA receptor
GluN2B subunit function (Flores-Barrera et al. 2014).
In the nucleus accumbens, D1 and D2 receptor responses
are also immature, resulting in decreased synaptic
interaction between this region and the prefrontal
cortex (Benoit-Marand & O’Donnell, 2008; Fig. 4).
In accumbal medium spiny neurons, D1 receptor
modulation of NMDA responses is age-specific with
cell excitability decreased in adolescents and increased
in adults (Huppé-Gourgues & O’Donnell, 2012a).
Similarly, D2 receptor activation has age-specific effects
on AMPA-evoked cell excitability, and D2–AMPA receptor
interactions recruit the activation of GABA interneurons
in adults but not adolescents (Huppé-Gourgues &
O’Donnell, 2012b). These findings indicate a functional
switch in reward processing during adolescent
development mediated by dopamine regulation of
GABA interneurons (Fig. 4).

Adolescent alterations in dopamine firing activity
have been shown to induce structural and functional
changes in mesocortical pathways (Mastwal et al. 2014).
Phasic activity in these neurons is naturally induced by
reward-related or motivationally salient events, whereas
tonic activity occurs spontaneously (Grace et al. 2007;
Schultz, 2007). In the ventral tegmental area, tonic firing
of dopamine neurons is increased during adolescence
and phasic firing is prolonged (McCutcheon & Marinelli,
2009; McCutcheon et al. 2012). Optogenetic studies have
shown that phasic dopamine firing in adolescents, but
not adults, facilitates the formation of mesofrontal axonal
boutons, resulting in enhanced mesofrontal circuit activity
and suppressed psychostimulant-induced locomotion
(Mastwal et al. 2014). The D2-like dopamine receptor
agonist, quinpirole, blocks this effect in adolescents,
whereas cortical plasticity is enhanced in adults by D2

receptor blockade (Mastwal et al. 2014).
Other studies have implicated a lack of adolescent

D2 receptor function in both risk-taking and anxiolytic
behaviors, with negative correlations found between those
behaviors and D2 receptor levels in the nucleus accumbens
(Falco et al. 2014; Mitchell et al. 2014). D2 receptor
activation by quinpirole infusion into the ventral striatum
decreases risk-taking behavior in adolescent rats (Mitchell
et al. 2014). In contrast, impaired impulse control and
learning of an association between an odor and a palatable
reward coincides with an adolescent peak of D1 receptor
expression in olfactory cortices (Garske et al. 2013).
Performance on this task is enhanced by administration
of a D1 agonist or a D2 antagonist (Garske et al. 2013).
These findings suggest that adolescent maturation of
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subcortical and cortical dopamine circuitry is critical for
emotional regulation, impulse control, and associative
learning.

Adolescence also appears to be a critical period for
maturation of the mesocortical dopamine system, during
which it is vulnerable to gene–environment interactions.
Dopamine neurons of the ventral tegmental area only
begin to express the netrin-1 receptor UNC5C during
adolescence (Manitt et al. 2010; Auger et al. 2013). While
the other netrin-1 receptor, DCC (deleted in colorectal
cancer), is expressed earlier, adolescence is a period in
which it exerts unique effects on the organization of
mesocortical dopamine circuitry (Grant et al. 2007; 2009;
Manitt et al. 2011). Animals that are haploinsufficient
in either unc5c or dcc show enhanced mesocortical
dopamine innervation and function as adults with
diminished behavioral response to psychostimulant drugs
(Auger et al. 2013). Adolescent isolation, which results in
stress during a major period of social development, results
in epigenetic hypermethylation of the tyrosine hydro-
xylase gene in mesocortical dopamine neurons, but only
in a mouse model with a genetic risk for neuropsychiatric

disease (Niwa et al. 2013). These molecular changes result
in several neurochemical and behavioral deficits that are
blocked by a glucocorticoid receptor antagonist (Niwa
et al. 2013). Social isolation during adolescence also results
in long-term impairment of impulse control and decision
making on a rat gambling task (Baarendse et al. 2013).
In adults that were isolated as adolescents, pyramidal
neurons of the prefrontal cortex are insensitive to
modulation of synaptic response amplitude by dopamine
and do not develop the late onset inhibitory regulation
by D2 receptors that is seen in normal adults (Tseng &
O’Donnell, 2007). Chronic adolescent treatment with the
D2-like agonist, quinpirole, also decreases dopamine fiber
and receptor density in prefrontal cortex, and inhibits
normal adult maturation of contingency degradation
behavior, which is the causal relationship between actions
and their consequences (Naneix et al. 2013). Thus, rapidly
maturing dopamine systems may be especially sensitive
to disruption by environmental influences during
adolescence, with long-term consequences on behavior
and associated psychopathologies such as drug abuse or
schizophrenia.
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Figure 3. Microcircuitry of the prefrontal cortex (PFC) showing developmental differences in dopamine
function
Adolescents (left) lack mature dopamine D1–glutamate receptor interactions on prefrontal cortical pyramidal
neurons, and acquisition of this element is vital for the development of cognitive and attentional processes. In
addition, D2 receptor-mediated GABAergic inhibitory control of prefrontal cortical activity is still immature, as
indicated by the dashed lines, demonstrating that cognitive processing within the PFC and other limbic regions is
profoundly different in adolescence than in adulthood (right).
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Nicotine uniquely alters adolescent brain
development

Nicotinic acetylcholine receptor pharmacology. Nicotinic
acetylcholine receptors (nAChRs) are pentameric
ligand-gated ion channels that are widely distributed in
human and rodent brain throughout all developmental
phases (Zoli et al. 1995; Broide & Leslie, 1999; Pentel et al.
2006). nAChRs are composed of homomeric (α7–α10) or
heteromeric (α2–α6, β2–β4) subunits, which contribute
to a diverse receptor pharmacology by regulating agonist
affinity/efficacy, ion selectivity, desensitization, and down-
stream signalling (McGehee, 1999; Gotti et al. 2006; Dani
& Bertrand, 2007).

Each nAChR subtype exhibits distinct patterns of
expression and function throughout the central and peri-
pheral nervous systems (Perry et al. 2002; Gotti et al.
2006). The most abundant neuronal subtype is the α4β2
nAChR, which has high affinity for nicotine (Dani &
Bertrand, 2007). These receptors desensitize at nicotine
concentrations lower than those required for activation
(Fenster et al. 1999) and, as a result, are mostly desensitized
in brains of smokers (Brody et al. 2006). Another common
neuronal subtype is the homomeric α7 nAChR, which
has lower affinity for nicotine compared to other nAChRs

and desensitizes rapidly at high nicotine concentrations
(Albuquerque et al. 1998; Dani & Bertrand, 2007). The
α3β4 nAChR subtype has low agonist affinity with slow
desensitization kinetics (Luetje & Patrick, 1991; Papke
& Heinemann, 1991), and although largely restricted to
caudal brain regions (Winzer-Serhan & Leslie, 1997; Perry
et al. 2002), α3β4 nAChRs serve a vital role in modulating
nicotine addiction pathways (Gallego et al. 2012; Toll et al.
2012; Leslie et al. 2013).

Neuronal nAChRs are central regulators of neuro-
physiology and signaling in addiction pathways (Dani
& Balfour, 2011; Leslie et al. 2013). nAChRs are
widely distributed in neuroanatomical areas implicated
in tobacco addiction (Gotti & Clementi, 2004), and
nAChR activation in these regions regulates mono-
amine neurotransmitter systems, particularly dopamine,
which is strongly implicated in reward processing and
drug reinforcement (Gotti et al. 2006; Albuquerque
et al. 2009). Indeed, heterologous nAChRs that contain
α4, β2, and other subunits (α4β2∗ nAChRs) are key
regulators of the mesolimbic dopamine system, mediating
nicotine-induced firing and burst activity of mid-
brain dopamine neurons in the ventral tegmental area
(Livingstone et al. 2009; Li et al. 2011; Zhao-Shea et al.
2011; Leslie et al. 2013). α7 nAChRs on glutamate afferents
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Figure 4. Microcircuitry of the nucleus accumbens (NAc) showing developmental differences in
dopamine function
Adolescents (left) lack mature accumbal D1–NMDA receptor interactions and D2–AMPA receptor interactions. In
addition, GABAergic inhibitory control of medium spiny neuron activity in the NAc is still immature, as indicated
by the dashed lines, illustrating that long term potentiation (LTP)/long term depression (LTD) within the NAc and
associated limbic regions is profoundly different in adolescence from in adulthood (right).
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also indirectly modulate dopamine release in the pre-
frontal cortex and fine tune dopamine neuron firing in
the ventral tegmental area (Mameli-Engvall et al. 2006;
Livingstone et al. 2009). In contrast, α3β4 nAChRs are
expressed predominantly in the medial habenula and
interpeduncular nucleus, stimulating both acetylcholine
and glutamate release in these nuclei (Perry et al. 2002;
Grady et al. 2009; Fowler et al. 2011), as well as dopamine
release in the hippocampus (Cao et al. 2005).

Functional immaturity of nicotinic receptors during
adolescence. Neuronal nAChRs exhibit distinct patterns
of expression that parallel key developmental events
within the cholinergic system and are critical regulators
of brain maturation from prenatal development through
adolescence (Dwyer et al. 2009). In rodents, α4β2∗ and α7
nAChR expression and binding are higher in many brain
regions in adolescents than in adults (Adriani et al. 2003;
Doura et al. 2008). In vitro rubidium efflux assays have
shown α4β2∗ nAChRs to have higher functional activity
in the cortex, hippocampus, striatum, and thalamus
during this period (Britton et al. 2007; Kota et al.
2007). Furthermore, in the transition from adolescence
to adulthood, there is a complex and sex-dependent
pattern of functional maturation of nAChRs that regulates
[3H]dopamine release in the ventral striatum (Azam et al.
2007).

Nicotine enhances neuronal activity, as measured by
c-fos mRNA expression, more robustly in adolescents
than adults in several reward-related regions, including
the nucleus accumbens shell, basolateral amygdala, and
ventral tegmental area (Shram et al. 2007; Dao et al.
2011). Patterns of nicotine-induced c-fos expression in
sensory and limbic cortices also change with adolescent
maturation (Leslie et al. 2004). Furthermore, both
nicotine and the α7 nAChR-selective agonist A-582941
increase expression of another activity related gene,
arc, in both medial prefrontal and ventrolateral orbital
cortices of adolescent rats much more than that of adults
(Schochet et al. 2005; Thomsen et al. 2008). Electro-
physiological studies have shown an early adolescent
onset of nicotine-enhanced frequency-evoked responses
in auditory cortex that reflects both thalamocortical and
intracortical response components. This nicotine effect is
mediated by α4β2∗ nAChRs, develops rapidly, and peaks
during adolescence, with a sex-dependent time course of
subsequent decline (Kawai et al. 2011). Unique effects of
acute nicotine exposure on monoamine neuronal activity
are also seen in adolescents. Dopamine neurons of the
ventral tegmental area are more sensitive in adolescents
than adults to nicotine-induced long-term potentiation
associated with plasticity of glutamate receptor function
(Placzek et al. 2009). Furthermore, initial exposure to
nicotine induces unique effects in adolescence on the

ascending serotonin system, as measured by double-
labelling for c-fos and tryptophan hydroxylase, with a
broader spectrum of targets and a different dose–response
function than in adults (Bang & Commons, 2011). Acute
nicotine also increases extracellular serotonin overflow
in the nucleus accumbens shell, while decreasing both
dopamine and serotonin in adolescent medial prefrontal
cortex as compared to adults (Shearman et al. 2008).

The altered neuronal sensitivity to nicotine during
adolescence is paralleled in behavioral responses (Fig.
5). Following acute drug exposure, nicotine enhances
locomotor activity in adolescent rodents, but decreases
it in adults (Cao et al. 2010). Acute nicotine treatment
also reduces anxiety in adolescent male rats (Cheeta
et al. 2001; Elliott et al. 2004; Cao et al. 2010).
Furthermore, adolescents associate a greater rewarding
effect with nicotine in conditioned place preference studies
(Vastola et al. 2002; Belluzzi et al. 2004; Shram et al.
2006; Brielmaier et al. 2007; Kota et al. 2007; Torres
et al. 2008) and exhibit a unique vulnerability to oral
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Figure 5. Preclinical studies using rodent models indicate that
nicotine produces age-specific behavioral responses
Adolescents exhibit greater behavioral sensitivity and susceptibility to
other drugs of abuse after nicotine exposure. In contrast, adults
display either opposite or no response to nicotine treatment.
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self-administration during the early adolescent period
(Adriani et al. 2002). Adolescent rats also readily acquire
intravenous nicotine self-administration and take more
nicotine than adults (Chen et al. 2007; Levin et al.
2007; Natividad et al. 2013). In contrast, adolescents
show less aversion to nicotine than adults (Adriani
et al. 2002; Shram et al. 2006; Torres et al. 2008) and
less prominent withdrawal symptoms following chronic
nicotine exposure (O’Dell et al. 2006; Shram et al. 2008).
This shift in balance between the positive and negative
effects of nicotine that occurs in adolescence (Fig. 5) may
underlie an increased vulnerability to smoking and the use
of e-cigarettes.

Long-term effects of chronic adolescent nicotine
exposure. Chronic nicotine exposure during adolescence
produces alterations in neurochemistry and behavior that
differ markedly from those in adulthood. Adults are
more responsive than adolescents to nicotine-induced
upregulation of α4β2∗ and α7 nAChR binding sites;
in contrast, adolescents exhibit greater downregulation
of α6∗ nAChRs than adults following chronic nicotine
treatment (Collins et al. 2004; Doura et al. 2008).

Chronic nicotine treatment also produces age-specific
effects on monoamine systems, with serotonin systems
particularly vulnerable during adolescence. Biochemical
studies have shown that chronic, high-dose nicotine
exposure during adolescence results in altered indices
of serotonin receptor function, with decreased 5-HT2

receptor binding in terminal regions and a switch in
signalling of 5-HT1A receptors from stimulation to
inhibition of adenylyl cyclase activity (Xu et al. 2002).
Chronic nicotine treatment during adolescence also alters
subsequent response of the serotonin system to nicotine
later in life, suggesting that nicotine may elicit life-
long detriments in serotonergic signalling (Slotkin &
Seidler, 2009; Slotkin et al. 2014). Whereas chronic
high-dose nicotine treatment has been reported to
result in age-specific decreases in adolescent striatal
serotonin transporter (SERT) densities (Collins et al.
2004), a 4 day low-dose intravenous treatment results in
region-specific changes in serotonergic function, which
include elevated SERT binding in prefrontal cortex and
basolateral amygdala as well as increased serotonin content
and turnover in the nucleus accumbens (Dao et al.
2011). This semi-chronic nicotine treatment models
the brief, low-dose initiation of adolescent smoking
behavior, with distinct behavioral and neurochemical
consequences during adolescence (Fig. 6). This nicotine
pretreatment also induces serotonin release and 5HT1A

receptor activation that leads to enhanced D2 receptor
function in adolescents but not adults (Dao et al.
2011). These lasting age-specific alterations result in
increased quinpirole-induced locomotion and acquisition

of cocaine self-administration (McQuown et al. 2007;
Dao et al. 2011). Adolescent D3 receptor function is
also enhanced by this nicotine treatment paradigm,
through CRF-1 receptor activation, resulting in enhanced
quinpirole-induced penile erection (Mojica et al. 2014).

Although striatal dopamine transporters have been
reported to be upregulated by nicotine in adolescents but
not adults, very few age differences have been reported
in the effect of chronic nicotine on presynaptic markers
of dopaminergic function (Collins et al. 2004; Dao
et al. 2011). However, repeated nicotine treatment has
been shown to induce elevated mesocortical dopamine
release in adolescents but not adults (Counotte et al.
2009; Dao et al. 2011). Additionally, chronic adolescent
nicotine exposure induces unique and persistent dendritic
remodeling in the prelimbic cortex (Bergstrom et al. 2008)
and in the nucleus accumbens shell (McDonald et al.
2007), where the effects are mediated by D1 receptors
(Ehlinger et al. 2015).

Chronic nicotine exposure during adolescence also
has long-term consequences on cognitive behavior.
Adolescent, but not post-adolescent, treatment with
nicotine has been shown to result in diminished cognitive
function as adults with reduced attention span and
enhanced impulsivity (Trauth et al. 2000; Counotte et al.
2009; Counotte et al. 2011). These cognitive disturbances
are associated with reduced presynaptic mGluR2 protein
and function on excitatory synapses in the prefrontal
cortex, which alters the rules for spike timing-dependent
plasticity in prefrontal networks (Counotte et al. 2011;
Goriounova & Mansvelder, 2012). Attentional deficits in
adults that received adolescent nicotine can be rescued
by local infusion of a group II mGluR agonist (Counotte
et al. 2011). Emotional responses also exhibit long-term
alterations following adolescent nicotine treatment, with
enhanced anxiety and fear (Slawecki et al. 2003; Smith et al.
2006). Furthermore, adolescent but not adult nicotine
treatment can result in a depression-like state in adulthood
that is normalized by treatment with nicotine or anti-
depressants (Iñiguez et al. 2009).

Clinical implications

Tobacco use remains the major cause of premature death
in the United States, with 30% of cancer deaths and
18% of all deaths directly attributable to smoking (Burke
et al. 2008). Approximately 90% of adult smokers initiate
tobacco use before the age of 18 years (Substance Abuse
and Mental Health Services Administration, 2011), and
those who do not start smoking in adolescence are
unlikely to ever do so (Sussman, 2002). Teen smokers
are significantly more likely to use other drugs (Lai et al.
2000; Hanna et al. 2001; Biederman et al. 2006), engage
in high-risk sexual behavior (Rashad & Kaestner, 2004;
Jackson et al. 2012), and develop psychiatric disorders than
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non-smokers (McKenzie et al. 2010; Kollins & Adcock,
2014). Whereas proof of cause and effect is often difficult
to obtain in clinical studies (Mathers et al. 2006), use
of animal models has provided substantial evidence that
the limbic system, which controls cognition, emotion,
and drug reward, is actively maturing during adolescence
and is uniquely vulnerable to long-term modification by
nicotine. Although many preclinical studies have used
chronic, high-dose nicotine exposure protocols that do not
model early smoking behavior, more recent studies have
indicated that even brief exposure to a low dose of nicotine
can produce lasting change in the adolescent brain. Even
a single day of nicotine treatment in adolescent rats can
enhance sensitivity to aversive stimuli later in life (Iñiguez
et al. 2009), a finding that supports the concept that teen
smoking may not only be co-morbid with mood-related
disorders but may actually induce them (John et al. 2004;
Klungsoyr et al. 2006; Flensborg-Madsen et al. 2011).
Although epidemiological data suggest that tobacco acts
as a ‘gateway’ to subsequent substance abuse (Kandel et al.
1992; Lai et al. 2000; Degenhardt et al. 2010), it is not clear
from human studies whether this reflects social influences
or a drug effect (Lindsay & Rainey, 1997; Anthony, 2012).
However, brief treatment of adolescent rats with a low dose
of nicotine, equivalent to one to two cigarettes per day
for 4 days, enhances acquisition of self-administration for
cocaine, methamphetamine and alcohol, induces cocaine
locomotor sensitization, and enhances sexual arousal
(McQuown et al. 2007; McQuown et al. 2009; Dao et al.
2011; Figs 5 and 6). Such findings provide substantial
support for a neurobiological sensitization mechanism
(Kandel & Kandel, 2014).

Although dopamine is clearly involved, animal studies
also point to the unique sensitivity of the adolescent

serotonin system to regulation by nicotine (Shearman et al.
2008; Bang & Commons, 2011; Dao et al. 2011). Such
findings are consistent with a clinical study that revealed a
highly significant association between a polymorphism of
the SERT promoter region and the initiation of smoking,
using both case-control analysis and family-based designs
(Kremer et al. 2005). In a recent study, 15 out of the 16
top-ranked single nucleotide polymorphisms associated
with teen smoking or nicotine dependence were also
found to be involved in dopaminergic signaling pathways,
although none were significant when controlled for
multiple comparisons (O’Loughlin et al. 2014). Another
key feature of the adolescent effects of nicotine, as seen
in animal studies, is the unique sensitivity of the early
adolescent period as compared to late adolescence and
adulthood (Laviola et al. 2001; Cao et al. 2010; Dao et al.
2011; Kawai et al. 2011). This finding provides a biological
basis for the clinical observation that age of first cigarette
use is a critical determinant of tobacco dependence, with
those who started in their early teens having the greatest
difficulty quitting (Cengelli et al. 2012; Kendler et al. 2014).
The concept that early and late adolescence are periods of
differing vulnerability to drugs of abuse is also supported
by recent evidence from both human and animal studies
that early adolescence is a time of increased sensitivity
to alcohol use (Spear, 2015), whereas late adolescence
may be a time of greater vulnerability to the rewarding
effects of cocaine (Wong et al. 2013). Sex differences in
nicotine sensitivity at different phases of adolescence have
also been reported in preclinical studies (Cao et al. 2010;
Kawai et al. 2011; Lenoir et al. 2015), and are consistent
with clinical observations of differing developmental
trajectories of tobacco use in males and females (Chen &
Jacobsen, 2012).

Adolescent Rat

• D2R

brief, low-dose

(4 days, 60 µg/kg)

• 5-HT1AR

• D3R

• CRF-1

Dopamine-Mediated Behaviors

Nicotine Pretreatment

Quinpirole-induced

locomotion

Enhances Acquisition of:

• Cocaine self-administration

• Methamphetamine self-administration

• Alcohol self-administration

Induces cocaine locomotor sensitization

Quinpirole-induced

penile erection

Reward Behaviors

Figure 6. Nicotine pretreatment alters
dopamine-mediated behaviors, neuronal
activation, and reward sensitivity in
adolescent rats
We have found that brief, low-dose nicotine
pretreatment during early adolescence
enhances quinpirole-induced locomotion, an
effect that is mediated by D2 and 5-HT1A

receptors. Nicotine also enhances
quinpirole-induced penile erection, an effect
that is mediated by D3 and CRF-1 receptors.
Furthermore, nicotine pretreatment during
adolescence sensitizes reward responses to
drugs of abuse, enhancing the acquisition of
cocaine, methamphetamine, and alcohol
self-administration. Nicotine pretreatment also
induces cocaine locomotor sensitization to low
doses of cocaine. These effects are age-specific
and are not present during late adolescence or
adulthood.
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One important aspect of adolescent nicotine exposure
is the long-lasting neurochemical and behavioral changes
that result. Such findings suggest that nicotine may induce
epigenetic changes in the neural genome. Recent evidence
has been provided for transgenerational epigenetic effects
of fetal nicotine exposure on lung function, suggesting that
nicotine can create lasting, multigenerational alterations
in the epigenome (Rehan et al. 2012; Leslie, 2013). A series
of studies investigating the ‘gateway’ effect of nicotine also
found that chronic nicotine exposure sensitizes cocaine
behavioral responses and long-term potentiation in the
nucleus accumbens, amygdala, and hippocampus (Levine
et al. 2011; Huang et al. 2013, 2014). These effects
are both unidirectional in that cocaine does not affect
nicotine-induced responses and result from inhibition of
histone deacetylase (Kandel & Kandel, 2014). Although
such findings demonstrate epigenetic mechanisms that
could mediate nicotine ‘gateway’ effects, these studies
were performed in adult mice. Future studies should take
into consideration that adolescence, a period of dynamic
maturation and enhanced drug sensitivity, is the typical
period when initiation of smoking occurs. In doing so,
they may uncover novel epigenetic mechanisms mediating
age-specific behavioral and neurochemical alterations
after adolescent nicotine exposure.

With increasing evidence that aberrant activation of
nAChRs during adolescence triggers lasting changes in
neuronal signalling, use of drugs containing nicotine may
have potentially severe consequences for teen addiction,
cognition, and emotional regulation. Thus, not only
tobacco but also e-cigarettes must be considered as serious
threats to adolescent mental health. E-cigarettes were
initially introduced as a promising tool for smoking
cessation. However, lack of federal regulations and a wide
selection of flavors make e-cigarettes not only accessible,
but also appealing to young people (Grana et al. 2014).
Indeed, emerging clinical evidence reveals that more
teenagers currently use e-cigarettes than tobacco (Dutra
& Glantz, 2014; Wills et al. 2015). Between 2011 and
2013, the use of e-cigarettes amongst teens has tripled
with more than a quarter of a million youths having
experimented with ‘vaping’ in 2013 (Bunnell et al. 2015).
Even amongst current adolescent smokers, e-cigarettes
increase the likelihood of perpetuating and increasing
tobacco use (Dutra & Glantz, 2014; Lee et al. 2014).
Teenagers who use e-cigarettes are also more likely to
escalate to smoking tobacco (Dutra & Glantz, 2014; Wills
et al. 2015). Current data indicate that nicotine disrupts
normative limbic development and primes behavioral
susceptibility to drugs of abuse (McQuown et al. 2009;
Dao et al. 2011). Together, this raises serious concerns for
the impact of e-cigarettes on public health, suggesting that
they may be a new ‘gateway’ to both future tobacco use
and substance abuse.
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